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Synopsis 

By generalizing the Smith-Ewart theory, a system of polymer particle population balances is 
developed for describing the kinetics of emulsion polymerization processes involving any number 
of monomer species. Each population is characterized by the number of active radicals of each 
type presnt  inside each particle, and described through a size distribution function. An approxi- 
mation procedure is proposed for reducing the original system to that typical of homopolymeriza- 
tion processes, thus characterizing each population-only through the overall number of radicals, 
without any significant loss of accuracy. The reliability of such " pseudo-homopolymerization 
approach" is tested by comparison with polymer composition vs. monomer conversion experimen- 
tal data for the ternary system acrylonitrile-styrene-methyl methacrylate. 

INTRODUCTION 

The continuous research activity of polymeric materials suitable for new 
applications has increased the number of instances where more than one 
monomer is used in the polymer synthesis. Particularly in emulsion polymer- 
ization, a large number of multimonomer polymers have recently received 
much industrial interest. 

Since the classical work by Min and Ray' in the context of emulsion 
homopolymerization, it has been recognized that the accurate simulation of 
the process kinetics requires the description of the distribution function of 
each population of particles in terms of both size and number of active 
radicals. The knowledge of these particle populations is a necessary condition 
for determining the microstructure of the final product. This includes the 
molecular weight distribution, the monomer sequence distribution, the ending 
groups distribution, and other ~haracteristics~-~-all of paramount impor- 
tance in assessing the application properties of the final material. 
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In the case of homopolymerization the relevant kinetic equations are those 
based on the classical theory originally proposed by Smith and E ~ a r t . ~  These 
constitute a system of population balance equations in two dimensions: the 
volume and the number of radicals per particle. These equations can be easily 
generalized to the case of multimonomer polymerization, by introducing a 
multidimensional particle distribution whose independent variables are the 
volume and the number of radicals of each type. However, the difficulties in 
the mathematical treatment of these equations increase quite rapidly, and the 
computer time for numerical solution increases exponentially with the number 
of monomer species in the system. Thus, probably even for binary systems, 
the approach of solving the generalized Smith-Ewart equations is not feasible 
in practice. 

The aim of this work is to present a new approach, which we refer to as the 
“ pseudo-homopolymerization approach,” which allows us to reduce the 
Smith-Ewart equations relative to a multimonomer system to those of a 
suitable homopolymerization system. The kinetic parameters appearing in the 
latter, i.e., the “ pseudo-homopolymerization parameters,” are evaluated 
a priori as suitable averages of the true kinetic parameters of the original 
system. This greatly reduces the numerical effort for solving kinetic models of 
multimonomer polymerization systems, and makes it identical to that typical 
of homopolymerization systems independently of the number of monomer 
species involved. 

In the following, we first analyse in detail the case of the ternary system, 
since this is the case where the mathematical formalism can still be kept quite 
simple without any significant loss of generality. As a particular case of this, 
the solution for the most common binary copolymerization system is then 
derived. The obtained relationships are also discussed in comparison with the 
results of previous analysis reported in the literature. Next, the solution for 
the most general case, involving any number of monomer species, is presented. 
Finally, the reliability of the pseudo-homopolymerization approach has been 
tested by comparison with experimental data relative to the polymer composi- 
tion vs. overall monomer behavior, for the ternary system: acrylonitrile- 
styrene-methyl methacrylate. 

KINETICS OF EMULSION TERPOLYMERIZATION 

Let us consider a quite general form of the population balance equations 
which account for some more phenomena than those included in the original 
Smith-Ewart theory. The development of these equations is a straightfor- 
ward generalization of the extension from homopolymerization to binary 
copolymerization described in detail by Ballard et Therefore, it  will not 
be discussed here in any detail. However, it  is worth pointing out that in the 
following we will account also for particle growth and generation, so that the 
resulting equations can be adopted very conveniently for developing a compre- 
hensive model (cf. Min and Ray’ for emulsion homopolymerization) of the 
entire kinetic process. On the other hand, for the sake of simplicity, polymer 
particle breakup and coalescence will be neglected. 
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Thus, considering three reacting monomer species, the following population 
balance equation can be written: 

where fi, j ,  k( u )  do represents the number of polymer particles having i radi- 
cals of type 1, j of type 2, and K of type 3, whose volume lies between u and 
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u + du; gijk is the volume growth rate of such particles: 

where PLJ = k,,,M, MW,/p,NA indicates the rate of polymer volume produc- 
tion due to the propagation reaction of an active chain of type i with the 
monomer j (M, is the monomer concentration inside the particle and MWJ its 
molecular weight). pp and N A  indicate polymer density and Avogadro’s 
number, respectively. Furthermore, p, is the first-order rate coefficient for 
entry of radicals i into polymer particles; k,  is the first-order rate coefficient 
for exit (or desorption) of radical i; alJ is the pseudo-first order rate constant 
(since it includes the relevant monomer concentration, i.e., j in this case) for 
propagation of radical i with monomer j ;  2cLl is the rate constant for the 
termination reaction between the radical species i and j .  Finally, rh, , and rm, I 

represent the rate of homogeneous and micellar nucleation, respectively. In 
describing the nucleation processes, it  is assumed that the generated nuclei are 
of fixed volume (oh and urn for those generated through the homogeneous or 
the micellar mechanism, respectively), and contain at  most one active radical 
of some type. This is conveniently represented in mathematical form through 
the Dirac delta function Q(u - 5) and the Kroeneker function 6z,l.1,6 

It is worth noting that the kinetic processes described by eq. (1) occur on 
widely different time scales. In particular, the chain propagation processes are 
about 2-3 orders of magnitude faster than any of the termination 
processes-which is unavoidable when large molecular weight values have to 
be obtained. This provides a highly stiff character to eq. (l), whose solution 
becomes quite complex and tedious, even using advanced numerical tech- 
niques. However, this same observation suggests to simplify eq. (1) by neglect- 
ing all terms but those relative to propagation, as follows: 

This is a rather accurate approximation, which actually means that the 
faster reactions (i.e., propagation) are at quasi-steady-state conditions with 
respect to all the slower reactions (i.e., initiation and termination). 

It is worth noting that only particles containing the same overall number of 
active radicals (n = i + j + k )  appear in eq. (l), as it is expected since only 
propagation processes are accounted for. Thus, eq. (3) can be regarded as an 
approximation of the complete population balance (1) where only transitions 
among states characterized by the same overall number of active radicals are 
considered. These are certainly much faster than transitions involving states 
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with a different overall number of radicals, which are all due to kinetic 
processes other than propagation, thus justifying the approximation. 

Equation (3) constitutes a system of homogeneous finite-difference equa- 
tions, whose solution can be obtained by various techniques. The one adopted 
in the sequel has been chosen because of its simplicity, particularly in view of 
the generalization to multimonomer systems. 

The solution of eq. (3) can be represented as follows: 

fi, j, k = 'ijk fn (4) 

where fn refers to particles containing n radicals of any type, and Pi$ is the 
probability that one such particle contains i radicals of type 1, j of type 2, 
and k of type 3, being i + j + k = n. Such a probability can be computed by 
multiplying the multinomial coefficient,' indicating the number of possible 
combinations among the different radicals, by the probability of th;! simulta- 
neous presence inside the particle of a given number of radicals of each type. 
Since all the involved kinetic events are independent of each other, the 
following relationship holds: 

P . .  v k  = (n; i ,  j ,  k)P:PiPt 

where (n;  i ,  j ,  K )  is the trinomial coefficient (= n ! / i ! j ! k ! ) ,  and Pl, P2, and P3 
are the probabilities associated with the single radicals of types 1, 2, and 3, 
respectively. These can be easily computed through the steady state balance 
of the transitions among various states, each representing one radical type, 
according to the scheme shown in Figure 1. For the first two states the 
following equations are obtained: 

pl("12 + "13) - p2"Z1 - '831 = (6) 

Since the analogous equation for the third and last state would be redundant, 
it  is replaced by the consistency equation 

Pl + P2 + P3 = 1 (8) 

The resulting linear algebraic system (6)-(8) can be easily solved, leading to 
the following expressions for the probability coefficients: 

where 

= "12"23 + " 2 8 1 3  + "21"13 + "21"32 + "21"31 + " 2 8 3 1  

+ a12"32 + a12"31 + "32"13 (12) 
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Fig. 1. Schematic representation of the transitions between states due to cross propagation for 
particles with n active chains [q. @)I. 

These expressions, substituted in eq. (5), yield the solution of the approxi- 
mated population balance (3), thus relating the detailed size distribution 
function f i ,  ,, to that lumped with respect to the radical type, f,. Substitut- 
ing such a solution in the complete population balance ( l ) ,  and adding all 
terms for j = 0, n - i and i = 0, n with k = n - i - j, after some algebraic 
manipulations the following equation is obtained: 

where the following new parameters have been introduced: 

P* = P1 + Pz + P3 

k* = KIPl + k2P2 + k3P3 

c* = C,,P," + CzzPz" + CsP: + 2C,,P,P, 

+2C13P,P3 + 2C2,P2P3 (16)  
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It should be noted that eq. (13) is actually coincident with the classical 
Smith-Ewart population balance for homopolymerization, whose kinetic pa- 
rameters p*,  K*, c*, g,*, r:, and r,* are suitable averages of the true 
multimonomer polymerization parameters. These will be referred to as 
pseudo-homopolymerization parameters. 

By inspection of the above averaging equations it can be seen that their 
mathematical form depends solely upon the reaction order of the kinetic 
process under examination with respect to the radical species inside the 
particle. Namely, the nucleation (18) and (19) and radical entry (14) processes 
are zeroth order, the radical desorption (15) and particle growth (17) processes 
are first order and the bimolecular termination (16) process is second order. 
This provides a simple rule for readily extending the pseudo-homopolymeriza- 
tion approach to other kinetic processes, not accounted for in this work, which 
can be of relevance in some specific emulsion polymerization process. 

It is worth stressing that the procedure for obtaining the pseudo-homopoly- 
merization parameters does not involve any additional assumption, besides 
the validity of eq. (3). The most important point, which makes this approach 
feasible, is that the obtained parameters do not depend on the overall radical 
number n, thus really reducing the original population balance to that typical 
of homopolymerization systems. 

Thus summarizing, the application of the pseudo-homopolymerization ap- 
proach consists in the following steps. First, the pseudo-homopolymerization 
parameters are evaluated from the true ones based on eqs. (14)-(19); next, the 
population balance (13) is solved using any of the methods proposed in the 
literature for emulsion homopolymerization. Once f ,  has been computed, 
the detailed distribution function ti, ,, can be readily obtained through eq. 
(4). 

THE CASE OF EMULSION COPOLYMERIZATION 

The pseudo-homopolymerization approach can easily be applied to the case 
of a binary polymerization system, which is worth reporting here in some 
detail since it is probably the most common in applications. In this case only 
two types of radical species are present ( i  and j ) ,  thus generating a bidimen- 
sional size distribution function, f i , , (u) .  Following the same procedure de- 
scribed above, the distribution function f i ,  i( u )  can be represented, similarly 
to eqs. (4) and (5), in the following form: 

f .  1 ,  J . = ( n ;  i, j)P;Plf,  

where (n; z, j) is the usual binomial coefficient, and the probability coeffi- 
cients are obtained directly from eqs. (10)-(12), by simply neglecting all terms 
referring to the third radical species, as follows: 

Finally, the lumped distribution function f ,  is obtained from the solution of 
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the homopolymerization population balance (13), whose parameters are de- 
fined, similarly to the previous case, by the following expressions: 

(23 )  p*  = P1 + P 2  

k* = klPl + k2P2 (24)  

c* = .,,P," + c22P; + 2Cl2P1P2 

g,* = [P,(P11 + P 1 2 )  + P2(P21 + P22)In 

The kinetics of emulsion copolymerization has been previously analyzed in 
the l i t e r a t ~ r e ~ . ~ ;  note that the solution reported by Ballard et a1.2 does not 
agree with that reported in the present work. In particular, it is important to 
reiterate that the pseudo-homogeneous parameters do not depend on the 
overall number of radicals in the particle. 

THE GENERALIZED PSEUDO-HOMOPOLYMERIZATION 
APPROACH 

The above-reported procedure can be applied to the most general case 
where rn monomeric species are polymerized simultaneously. This leads to the 
solution of the generalized form of the Smith-Ewart population balance 
equation, which involves the size distribution function f,,, ,*,. , . , ,, ( u ) ,  where 
n,, n 2 , .  . . , n ,  indicate the number of active radicals, present inside the 
growing polymer particle, of type 1,2, .  . . , m, respectively. Since in this case 
the mathematical formalism becomes quite cumbersome, only the final results 
are reported in what follows. 

The detailed size distribution function is expressed as follows: 

fn , ,  n2,. . . . n, = fnP;"lPp . * * Pzm( n; n,, n 2 , .  . . , n,) 

where n = n, + n2 + . - - +n, is the overall number of active radicals inside 
the particle. The probability coefficients can be computed through a pseudo- 
steady state balance among various states each containing radicals of different 
type, on the basis of the same arguments discussed above for the ternary 
sys tem. 

The resulting balance equations can be represented in the matrix form: 

A P = b  (30) 

where P is the (m, 1) vector containing all the probability coefficients Pi, b is a 
similar vector whose terms are all zero, but the last one which is equal to 
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unity, and A is the following (m, m) matrix: 

... 
- a m 1  

- C j a l  j - a21  - a31 a m - 1 . 1  

... - a m 3  
- - a13 - a23 C j a 3 j  am- 1,3 

. . .  . . .  . . .  . . .  . . .  . . .  (31) 

... ... . . .  . . .  ... . . .  

1 1 1 1 1 1 

The system of linear algebraic eqs. (30), can be easily solved by any of the 
various available numerical techniques. 

The last point concerns the evaluation of the lumped size distribution 
function f,. Following the same procedure outlined above, it can be shown 
that the detailed Smith-Ewart equation generalized to multimonomer poly- 
merization reduces to the classical form -for homopolymerization (13), where 
the pseudo-homopolymerization parameters are defined as follows: 

Thus, the procedure for applying the pseudo-homopolymerization approach to 
a system involving any number of monomeric species remains basically the 
same as the one described above for ternary systems. 

NUMERICAL EXAMPLE 

In order to better describe the pseudo-homopolymerization approach, let us 
consider a numerical example. With illustrative purposes, the parameter 
values reported in Table I are considered. These values are of practical 
significance, since they closely reproduce a typical batch emulsion polymeriza- 
tion process of the ternary system acrylonitrile (A)-styrene (S)-methyl 
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TABLE I 
Parameter Numerical Values Used for Calculating the Curves Shown in Figures 2,3, and 4 

a = 9.87 X 10-16cm3 
b = 58.46 

= 1.19 x 1014 1/cm3 
aAA = 2.409 x lo4, as = 5.318 x lo5, aAM = 9.560 x lo4 l /s  
aSA = 6.862 X lo2, ass = 2.666 X lo2, aSM = 3.456 X 10' l/s 
aMA = 4.352 x lo2, aMs = 1.002 x lo3, aMM = 3.107 x lo3 l/s 

MW, = 53.06 g/mol 
MW, = 104.20 g/mol 

MW, = 100.11 g/mol 
pp = 1.108 g/cm3 
p* = 1.354 X 10' 
c* = 2.126 X 10-14/u 

l/s 
l/s 

k* = r$ = r: = 0 

methacrylate (M)? The particle size distribution is described as a perturba- 
tion of the Gamma distribution, according to Hulburt and K a t ~ , ~  as follows: 

The three parameters a, b, and c are evaluated from the first three moments 
of the distribution function f (u) ' ;  in this example, typical numerical values 
are assumed, corresponding to the usual values of number of particles, total 
volume of the particles, and variance of the particle size distribution of 
polymer produced by emulsion polymerization in a batch reactor (see Table I). 

The f,(u) values can be obtained by solving eqs. (13); in particular, for 
r z  = rz = 0, the pseudo-steady-state, constant volume, analytical solution 
reported by O'Toole'' has been considered for each volume value: 

where x = 6, a = p* /c* ,  and m = k*/c* .  I , (x)  indicates the modified 
Bessel function of first kind and order v. The following volume dependence of 
p*,  K*, and c* have been introduced in the model equations: 

In Figure 2, the 3-dimensional distribution function f,(u) is shown. The 
average value of the active chains in the particles is 1.33; the dotted line 
indicates the locus of the particle volumes corresponding to the maximum 
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v.10" (cm3) - 
Fig. 2. Three-dimensional distribution function of size and number of active chains within the 

particle. 

values of the distribution functions f,( u).  Note that the radical distribution is 
affected by the size distribution, i.e., large particles accumulate more active 
chains than the small ones. This feature is evidenced in Figure 3, where the 
radical distributions f,(u) for three different particle volume values are 
shown. 

In Figure 4, the 3-dimensional distribution function Ni, j ,k  = /Ffi, j , k ( u )  du 
is shown. Three cases are examined: i + j + k = 3, 5, and 7. It appears that 
particles with large values of j ,  small values of k, and very small values of i 
are largely dominant. This follows from the values of the intrinsic propagation 
rate constants, i.e., aij ,  adopted in this example and reported in Table I. 

EXPERIMENTAL VERIFICATION OF THE 
PSEUDO-HOMOPOLYMERIZATION APPROACH 

In order to establish the reliability of the pseudo-homopolymerization 
approach, the calculated results have been compared with the experimental 
values measured during the batch polymerization of a ternary system. At  this 
stage, such a comparison has been limited to the polymer composition vs. 
conversion curves, which, although they do not describe the detailed time 
evolution of the reacting system, are indeed of paramount importance in 
industrial applications. Moreover, this choice allows a drastic reduction in 
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Fig. 3. Active chain distribution function I,( u) for three particle volume values (u in cm3). 

both the modeling and the experimental efforts required for accomplishing 
such a comparison. 

Let us first derive the model equations needed for calculating the polymer 
composition versus total conversion curves. The mass balances for each 
monomer species in a batch, isothermal, and well-stirred reactor are given by 

-- - -Rp,V, mi 

dt 

where Mi indicates the total unreacted moles of monomer i in the reactor and 
V, the total volume of the aqueous phase. Rpi is the rate of monomer 
consumption due to the polymerization reaction, both in the aqueous solution 
and in the polymer particles. When assuming that the reaction occurs mainly 
within the polymer particles, the rate of monomer consumption can be 
evaluated as follows: 

which, by substituting the pseudo-homopolymerization approximation (29), 
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Fig. 4. Three-dimensional distribution function N,, ,, of number and type of active chain 
within particles ( z  = type 1; j = type 2; k = type 3) for three values of total active chain number 
n = i + j  + k .  (a) n = 3; (b) n = 5; (c) n = 7. 
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reduces as follows: 

n,+ . . . +  n i t  . . .  +n,=n 

Using standard mathematical relationships for power series and the normal- 
ization condition of P [last equation in the system (30)], eq. (43) reduces to: 

where the integral term represents the overall number of active chains inside 
all polymer particles. By introducing the average number of active chains per 
polymer particle ii, the integral above can be expressed as EN,, and eq. (44) 
reduces to 

where Kpi = C?=,,K,,.,P,-. The latter equation states that the total rate of 
monomer consumption is simply given as the product of the total number of 
active chains times the ith monomer concentration within the particles (Mi) 
and the effective rate constant of propagation, Kpi,  which accounts for the 
instantaneous distribution of the type of active chains in the particles. Such a 
parameter KPi  can be regarded as the pseudo-homopolymerization propaga- 
tion rate parameter, which, in the general pseudo-homopolymerization solu- 
tion reported above, appeared in eq. (35). Finally, it is worthwhile pointing out 
that, throughout the entire analysis reported in this work, the effect of 
polymer particle size on monomer solubility has been neglected, i.e., monomer 
concentration in polymer particle independent of size has been assumed. 

Using eq. (45), expressions for the residual moles of the i th monomer 
(according to eq. 
readily obtained 

38) as well as for the total moles of polymer produced can be 
as follows: 

ENp 
-- mp K .@. -Vw 

dt - ( ; : I  pJ ’) NA 

where Mp and Mpi indicate the total moles and the moles of monomer i 
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reacted to polymer, respectively. By inspection of eq. (46) it  appears that the 
instantaneous polymer composition yi (i.e., the ratio between the rate of 
consumption of each monomer and the total rate of polymer production) is 
simply given by 

KpiM, dM, i - Y.= - - dMp CT=,,K,,a, (47) 

while the corresponding integral or cumulative composition of the polymer is 
given by Y, = Mpi/Mp.  Thus, by integrating eq. (47) for each component 
( i  = 1-m) from Mp = 0 to M = Cim_lM: (where Mi” indicates the initial 
number of moles of monomer j in the reactor), the value of Mpr as a function 
of M,, and then the corresponding integral polymer composition vs. total 
conversion curve are obtained. Note that since the model is constituted by the 
system of ordinary differential equations (47) with initial condition (Mpi = 0 
a t  t = 0 for i = 1-m), its numerical integration can be easily performed 
through standard marching techniques. The predictor-corrector Adams 
method with variable step size and order has been used in this work. 

It is worthwhile stressing that eq. (44) is time-independent. Therefore, 
typical “kinetic” information such as the total number of active chains within 
the particle are not involved. This result follows from the application of the 
pseudo-homopolymerization approach, together with the assumption of 
monomer concentration within the particles independent of size. 

When assuming no mass transport limitations for the main reactants 
(monomers), the concentration of each monomer in each phase (oil droplets, 
aqueous phase and polymer particles) is solely determined by thermodynamic 
equilibria. Thus the distribution of the total residual monomer, given by 
(MY - MPi)  for j = l-m, among the various phases in the system can be 
calculated by coupling to eqs. (47) the following equations: 

9 

rn 

cai=l 
i - 1  

where ai and +i indicate the volume fraction of component i in oil droplets 
and polymer particles, respectively (note that Mi = Cpi /c); = (1 - Zy!l+i) 
is the volumetric fraction of polymer in the particles; V, and V, are the total 
volumes of monomer droplets and polymer particles; f i  and gi indicate the 
monomer solubility relationships in the oil droplets-aqueous phase and poly- 
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mer particles-aqueous phase systems, respectively. The system of nonlinear 
algebraic equations (48)-(52) is constituted by 3 m  + 2 relationships and its 
solution provides the values of the following 3m + 2 unknowns: a,, GC, M,, 
( i  = 1-m) ,  vd, and V,. The numerical solution of this system is performed at  
each integration step of eq. (47) using a suitable numerical procedure." 

Let us now consider in detail the monomer solubility relationships defined 
in eqs. (51) and (52). With respect to bulk thermodynamics, the evaluation of 
the chemical potentials of the various components in each phase is compli- 
cated by the colloidal nature of the two involved phases: oil droplets and 
polymer particles. In general, the mathematical description of multicompo- 
nent equilibria in emulsion systems is quite complex and involves a significant 
number of adjustable ~arameters.'~. l3 In this work, simplified equilibrium 
relationships are considered. 

Monomer Solubility in the Oil Droplets-Aqueous Phase System. In 
the case where only one monomer species is present, the monomer concentra- 
tion in the aqueous phase, M,, is equal to its saturation value in water, as 
long as oil droplets are present in the system. Such saturation values are 
usually available in the literature.14 In the case of multicomponent mixtures, 
the aqueous phase concentrations of each monomer species depends upon the 
oil droplet composition. When detailed experimental data are available, empir- 
ical equilibrium relationships can be developed. Since this is the case for the 
system under examination, an empirical expression for the equilibrium rela- 
tionships, f ,  will be used in the following. 

Monomer Solubility in the Oil Droplets-Particle Phase System. In 
the case of a binary system the chemical potential of each monomer species in 
the two phases can be expressed as follows'2.'3: 

z ,  j = 1 , 2 ,  i z j  (53 )  

where pf, pr ,  and pp indicate the chemical potential of component i in oil 
droplets, polymer particles, and reference state, respectively; mi, is the ratio 
of the numbers of segments per molecule in species i and j ,  and it can be 
estimated as the ratio of the molar volumes of the two monomer species15; ti, 
is the parameter accounting for the interactions between component i and 
component j ,  and its value can be estimated from suitable solubility data15; yd 
and y, are the interfacial tensions for the systems oil-water and particle- 
water, respectively; ?-, and r, indicate the radius of a droplet and a particle. 
Note that the chemical potentials (53) and (54) reduce to the usual bulk form 
when the surface terms ( 2 v y / r )  are neglected. 
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In the case under examination, the following assumptions can be intro- 
duced: (i) mi,: = 1 and mip = 0; (ii) ti; = 0 and t ip = tjP = 5,; (iii) negligible 
surface term in eq. (53), due to the high values of r, in usual emulsions; (iv) 
surface term in eq. (54) constant, according to the previous assumption of 
monomer concentration within the particles independent of size; namely, 
2V.y /rpRT = 2c.yp/rpRT = A is assumed. Equating the chemical potentials 
as gwen by eqs. (53) and (54), and accounting for the above assumptions, the 
following Gi - ai equilibrium relationship arises: 

l P  

where the bracketted term is independent on the component index. When 
combined with the monomer droplets-aqueous phase equilibrium relation- 
ships, f i ,  discussed above, eq. (55) leads to the desired polymer particle-aque- 
ous phase equilibrium relationships, gi defined by eq. (52). 

However, eq. (55) involves two adjustable parameters whose evaluation 
requires detailed equilibrium data. From the point of view of applications, it is 
more convenient to directly exploit the implication of eq. (55) that the ratio 

is the same for each monomer species, thus leading to the equivalent set 
of equilibrium relationships: 

If we have experimental values for 'pp, eq. (56) can be used for evaluating the 
values of + for each oil droplet composition, a. Now, it is worth mentioning 
that during the first two intervals of an emulsion polymerization $p remains 
constant and equal to the so-called maximum swelling. Experimental data for 
+p at saturation both for homopolymerization and for copolymerization are 
usually reported in the literature; therefore, it is convenient to use +p as a 
parameter instead of the two parameters t, and A.  

When oil droplets disappear (at the onset of the so-called interval I11 of the 
emulsion polymerization), a reduced set of equations has to be used, including 
eq. (48) with V, = 0 and eqs. (49) and (52). At this stage, the solubility laws for 
the polymer particles-aqueous phase system are required. Due to the lack of 
experimental data for unsaturated systems, the same relationships for the 
monomer partition between oil droplets and aqueous phase, ti, have been 
assumed for g,, simply substituting C ~ J ( C ~ = ~ I $ ~ )  for ai. 
These results can be readily extended to the case of multicomponent 

systems, under the same approximations mentioned above, leading to the 
following equilibrium relationships: 

which constitute a system of m linear algebraic equations with m unknowns 
(q+ or ai, as desired). 
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TABLE I1 
Monomer Feed Compositions for Binary and Ternary Polymerizations 

Monomer feed (wt 5%) 
RUn A S M 

~~~ ~~ 

Binary systems 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Ternary systems 

30 
50 
70 
30 
50 
70 

33.33 
20 
20 
60 

70 
50 
30 
- 
- 
- 

30 
50 
70 

33.33 
20 
60 
20 

- 
70 
50 
30 
70 
50 
30 

33.33 
60 
20 
20 

Thus summarizing, the simplified multicomponent equilibrium model de- 
scribed above requires only two sets of experimental data: organic phase-water 
phase solubilities and maximum swelling ratios. 

From the experimental side, the ternary system acrylonitrile (A)-styrene 
@)-methyl methacrylate (M) has been examined. A batch, isothermal, per- 
fectly mixed glass reactor at  constant pressure of nitrogen has been used 
together with the following operating conditions: stirring = 500 rpm; T = 
323 K; P = 1 atm; V, = 600 cm3; initial total amount of monomers = 100 g; 
initiator (K,S,O,) = 0.395 g; emulsifier (SDS) = 2.00 g. Polymer conversion 
and composition values have been measured gravimetrically and through 
elemental analyzer, respectively. Several experimental runs have been per- 
formed a t  various monomer feed composition both with two and three 
monomer species, as summarized in Table 11. 

TABLE I11 
Numerical Values of the Parameters Considered in the Polymer Composition 

Calculations Shown in Figures 5-11 (Experimental Runs of Table 11) 

Reactivity ra t ioP  
r, = 0.04, 
rSA = 0.41, 
rsM = 0.52, 

Organic phase-water phase solubility  law^'^*'^ 
aA = uIMwA/(l - u2 MwA) 

as = u 3 ~ w s  

a, = 249.2, 

(ai = cm3/mol) 
aM = 

u2 = 429.7, a3 = 2.7 X lo5, u4 = 6.3 X lo3 

TAM = 0.18 
rm = 1.35 
r,, = 0.46 
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Fig. 5. Copolymer composition vs. conversion for the binary system A-S: (A) run 1; (0) run 2: 

(0)  run 3 of Table 11. 
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Fig. 6. Copolymer composition vs. conversion for the binary system A-M: (A) run 4; (0) run 5; 

(0)  run 6 of Table 11. 
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Fig. 7. Copolymer composition vs. conversion for the binary system S-M: (A) run 7; (0) run 8; 
(0)  run 9 of Table 11. 
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Table 11. 
Monomer reacted vs. conversion for the ternary system A (0)-S (0)-M (A); run 10 of 
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20 40 60 ao 100 

CON V E R S I ON ( '/o ) 
Fig. 9. Monomer reacted vs. conversion for the ternary system A (0)-S (0)-M (A); run 11 of 

Table 11. 

The adopted numerical values of the model parameters, summarized in 
Table 111, have all been taken from the literature without any adjustment: 
reactivity ratios16 (bulk values) and binary organic phase-water phase solubil- 
ity relation~hips.'~~'~A constant, average value of maximum swelling (1 - +J 
has been considered in all runs: (Pp = 0.335.18v'9 

Experimental data and calculated polymer composition vs. conversion val- 
ues are compared in Figures 5-7 for the three binary systems and in Figures 
8-11 for the ternary system at various feed composition values. In all cases 

- 60 
ai- - 50- 
a 
0 

20 a 
I 
0 10 z 
0 

W 

0 20 40 60 80 100 
= o  

CONVERSION (%) 
Fig. 10. Monomer reacted vs. conversion for the ternary system A (0)-S (0)-M (A); run 12 of 

Table 11. 
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~~ 
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CONVERSION ( % I  

Fig. 11. 
Table 11. 

Monomer reacted vs. conversion for the ternary system A (0)-S (0)-M (A); run 13 of 

the agreement between experimental and calculated values is satisfactory. It 
is worthwhile pointing out that such an agreement has been obtained using a 
very simple model, whose parameters have all been taken from independent 
measurements taken from the literature, without any fitting procedure on the 
reported experimental data. This result supports the reliability of the pseudo- 
homopolymerization approach. Moreover, based on the pseudo-homopoly- 
merization approach it can be argued that a model of the same type could well 
be used in the case where more than three monomer species are present in the 
reacting system. It is noticeable that such a model is considerably simpler 
than the well-known polymer composition equations previously reported in 
the literature for bulk systems.16 

CONCLUSION 

The kinetic study of a polymerization process where several monomeric 
species react simultaneously with each other requires the evaluation of the 
sizes distribution of several particle populations, each characterized by the 
number and type of radicals contained in each particle. This is obtained 
through the solution of a set of population balances derived on the basis of the 
generalized Smith-Ewart theory. In the present work a procedure has been 
developed for reducing such a set of population balances to a smaller one, 
where each population is characterized only by the overall number of radicals 
of any type contained inside each particle. Since the latter is identical to the 
classical one describing homopolymerization processes, the developed proce- 
dure has been called the " pseudo-homopolymerization approach". 

The basic approximation is based on the observation that two types of 
transitions between particles of different populations are possible. The first 
one involves particles with different overall number of active radicals, and is 
due to radical entry or exit or termination mechanisms. The second one, 
instead, is due to propagation reactions and involves particle populations 
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characterized by the same overall number of active radicals, but of different 
type. Since in all polymerization systems the transitions of the latter type are 
much faster, these may be assumed to occur at any time instant under 
quasi-steady-state conditions with respect to all transitions of the first type. 

Since this approximation is quite reasonable for any system of practical 
interest, the developed pseudo-homogeneous approach is believed to provide a 
quite accurate description of the true kinetic behavior of multimonomer 
polymerization systems. Moreover, it reduces the amount of computations to 
that needed for homopolymerization systems, independently of the number of 
monomer species involved. This makes possible the detailed kinetic study of 
such complex reacting systems, resulting in the evaluation of the size distribu- 
tion function of populations of particles each characterized by the number and 
type of internal active radicals. 

The reliability of the pseudo-homopolymerization approach has been tested 
by comparison with experimental data relative to binary and ternary systems, 
involving acrylonitrile styrene, and methyl methacrylate. The reported com- 
parison, in terms of the polymer composition vs. overall conversion data, is 
not complete, since it does not involve the time evolution of the reacting 
system. However, the obtained results indicate that the behavior of the 
ternary system can be predicted from the involved binary polymerization 
parameters, as it  is implied by the pseudo-homopolymerization approach 
through the relationships defining the pseudo-homopolymerization parame- 
ters defined above. 

It is worth mentioning that, for some specific systems and particularly in 
the case of polymer composition vs. conversion behavior, the pseudo-homo- 
polymerization approach produces the same solutions previously reported in 
the literature. Thus, for example, in the case of a binary system, the ratio of 
eq. (47) written for component 1 and 2 leads to 

which corresponds to the well-known Mayo and Lewis2' equation for bulk 
copolymerization. This finding indicates that the copolymer composition vs. 
conversion behavior is not affected by the compartimentalized nature of the 
emulsion copolymerization system. In the context of the pseudo-homopoly- 
merization approach this conclusion is apparent for binary systems in eqs. 
(21)-(22), where it appears that the probability of a particular monomer 
terminal unit in the chain is independent of all initiation-termination pro- 
cesses. This same result holds true for multicomponent systems, as it  appears 
from eq. (31), which derives from eq. (3), whose reliability in applications has 
been discussed above. 

The value of the pseudo-homopolymerization approach is in the possibility 
of describing a reacting system involving any number of monomer species, not 
only as a function of conversion but also of time, using simple mathematical 
models, i.e., of the same type of those used for homopolymerization systems. 

a 
A 

APPENDIX: NOMENCLATURE 
parameter in eq. (38) (see Table I) 
parameter in eq. (55) = 2Vyp/rpRT 
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b 
C 

f i  

g,* 

mi; 
Mi 
Mp i 
MP 

n 
n - 

ni 
NP 
&, j ,  k 

'hi 

'2 

'2 

'P 

'm i 

'd 

' i j  

Rpi 
t 
T 
0 

vp q 
X 

Yi 

parameter in eq. (38) (see Table I) 
parameter in eq. (38) (see Table I) 
rate constant for the bimolecular termination between radical species i and j 
average rate constant for the bimolecular termination, eq. (34) 
constant in the expression of c*, independent on particle size [eq. (@)I 
size (volume) distribution function for the polymer particles 
size and total number of active chains distribution function for the polymer particles 
size and number of active chains of type i, j, and k distribution function for the 
polymer particles 
water phase oil droplets solubility law, eq. (51) 
average volume growth rate for the polymer particles with n active chains of any 

volume growth rate for the polymer particles, with i, j ,  and k active chains of type 1, 
2, and 3, respectively 
water phase-particle phase solubility law, eq. (52) 
rate constant for the monomolecular termination or desorption of the active chains of 

average rate constant for the monomolecular termination, eq. (33) 
constant in the expression of k*, independent on particle size, eq. (40) 
rate constant for the propagation of an active chain of type i with the monomer j 
effective rate constant for the propagation of active chain of any type with the 
monomer i 
modified Bessel function of first kind with order v and argument r 
number of monomers; ratio between monomolecular and bimolecular termination 
rates = k*/c* 
ratio of the number of segments per molecule in species i and j 
total unreacted moles of monomer i in the reactor 
total reacted moles of monomer i in the reactor 
total moles reacted to polymer in the reactor 
concentration of monomer i within the particles 
concentration of monomer i in aqueous phase 
molecular weight of monomer i 
number of active chains of any type within a particle with a particular size 
average number of active chains of any type within the particles 
number of active chains of type i within a particle with a particular size 
total number of particles in the reactor per unit volume of aqueous phase 
number of particles with any volume containing i, j ,  and k active chains of type 1, 2, 
and 3, respectively 
Avogadro's number 
probability of having an active chain with terminal unit of type i 
probability of having i, j and k active chains of type 1, 2, and 3 within a particle 
containing n = i + j + k active chains 
rate of homogeneous nucleation by precipitation of an active chains of type i 
average rate of homogeneous nucleation, eq. (36) 
rate of micellar nucleation by entry in a micelle of an active chain of type i 
average rate of micellar nucleation, eq. (37) 
radius of the oil droplets 
radius of the polymer particles 
reactivity ratio = kpiJkpi j  
rate of monomer i consumption due to the polymerization reaction 
time 
temperature 
volume of the polymer particle 
total volume of the aqueous phase in the reactor 
total volume of the oil droplets in the reactor 
total volume of the polymer paC*icles in the reactor 
molar volume of the monomer i 
parameter in eq. (39) = 6 
instantaneous mole fraction of monomer i reacted to polymer 

type, eq. (35) 

type i 
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cumulative mole fraction of monomer i reacted to polymer 
ratio between radical entry an4 bimolecular termination rates p*/c* 
volume fraction of monomer i in the oil droplets 
pseudo-first order rate constant for propagation of the monomer j with the active 
chains of type i 
a,, M w J / p p  N, = rate of polymer volume production for the reaction of propagation 
of the monomer j with the active chains of type i [see eq. (2)] 
interfacial tension for the system oil droplets-water 
interfacial tension for the system polymer particles-water 
Dirac function (= 0, except for u = 0) 
Kroeneker function (= 0, except for i = 1 where 6 = 1) 
volume fraction of monomer i in the polymer particles 
volume fraction of polymer in the polymer particles 
chemical potential of monomer i in the oil droplets 
chemical potential of monomer i in the polymer particles 
chemical potential of monomer i in the reference state 
mass density of the polymer 
rate of entry in the particles for the active chains of type i 
average radical entry in the pbrticles, eq. (32). 
constant in the expression of p* ,  independent on particle size, eq. (40) 
interaction parameter between component i and component j 

0) 
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